Swallow: Joint Online Scheduling and Coflow Compression in Datacenter Networks


Big data analytics in datacenters often involves scheduling of data-parallel jobs. Traditional scheduling techniques based on improving network resource utilization are subject to limited bandwidth in datacenter networks. To alleviate the shortage of bandwidth, some cluster frameworks employ techniques of traffic compression to reduce transmission consumption. However, they tackle scheduling in a coarse-grained manner at task level and do not perform well in terms of flow-level metrics due to high complexity. Fortunately, the abstraction of coflow pioneers a new perspective for scheduling majorization. In this paper, we introduce a coflow compression mechanism to minimize the completion time in data-intensive applications. Due to the NP-hardness, we propose a heuristic algorithm called Fastest-Volume-Disposal-First (FVDV) to solve this problem. We build Swallow, an efficient scheduling system that implements our proposed algorithms. It minimizes coflow completion time (CCT) while guaranteeing resource conservation and starvation freedom. The results of both trace-driven simulations and real experiments show the superiority of our system, over existing algorithms. Specifically, Swallow speeds up CCT and job completion time (JCT) by up to 1.47 times and 1.66 times on average, respectively, over the SEBF in Varys, one of the most efficient coflow scheduling algorithms so far. Moreover, with coflow compression, Swallow reduces traffic amount by up to 48.41% on average.

International Parallel & Distributed Processing Symposium